An Integrated Fuzzy Clustering Algorithm GFC for Switching Regressions
نویسندگان
چکیده
In order to solve switching regression problems, many approaches have been investigated. In this paper, an integrated fuzzy clustering algorithm GFC that combines gravity-based clustering algorithm GC with fuzzy clustering is presented. GC, as a new hard clustering algorithm presented here, is based on the well-known Newton’s Gravity Law. The theoretic analysis shows that GFC can converge to a local minimum of the object function. Experimental results show that GFC for switching regression problems has better performance than standard fuzzy clustering algorithms, especially in terms of convergence speed.
منابع مشابه
Bias-Correction Fuzzy C-Regressions Algorithm
In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most commonly used clustering method. However, the FCM algorithm is usually affected by initializations. Incorporating FCM into switching regressions, called the fuzzy c-regressions (FCR), has also the same drawback as FCM, where bad initializations may cause difficulties in obtaining appropriate clustering and regression results. In...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملA new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy
In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...
متن کامل